BUSTER-REPORT LATEX/PDF OUTPUT

Report on BUSTER refinement run in directory $00_MapOnly$

Contents

1	Run overview 1.1. Geometry WARNING messages	2 2
	1.1 At start of refinement	2
	1.1.2 At end of refinement (problem with model or restraints?)	2
	1.2 Run conditions	$\overline{2}$
	1.3 Refinement vital statistics	3
2	RSCC, R-factor, LLG and geometry evolution over the refine	4
	2.1 Reciprocal space correlation coefficient plots	4
	2.1.1 Initial RSCC plot	4
	2.1.2 Final RSCC plot	4
	2.2 R-factor behaviour during refinement	5
	2.3 LLG behaviour during refinement	5
	2.4 Geometry behaviour during optimisation	5
3	MolProbity analysis	6
	3.1 Summary statistics	6
	3.2 Ramachandran plot	7
4	Ligand analysis	8
	4.1 468 A 501	8
	4.1.1 Statistics for ligand	8
	4.1.2 Picture of ligand in electron density	8
	4.1.3 Mogul analysis for 468 A 501	9
	4.2 NAD A 500	14
	4.2.1 Statistics for ligand	14
	4.2.2 Picture of ligand in electron density	14
	4.2.3 Mogul analysis for NAD A 500	15
5	X-ray statistics	21
	5.1 Scaling parameters in last cycle	21
	5.2 Wilson plots	21
	5.2.1 Wilson plot at start of refinement	21
	5.2.2 Wilson plot at end of refinement	21
6	Real-space correlations	22
	6.1 Side chains of chain A	22
	6.2 Mainchain of chain A	22

1 Run overview

1.1 Geometry WARNING messages

1.1.1 At start of refinement

N.B. initial structure has some really bad geometry restraint violations Have $|\delta/\sigma|$ deviations > 5.0 σ . Number of outliers for each term: 2052 bond lengths. Worst is 27.3 σ 1.61 Å A|501:C17=C16 (468) 18 bond angles. Worst is 17.3 σ 99.37° A|501:C2=C3=N11 (468) 2 planes. Worst is 13.8 σ 0.28 Å A|501:C8=C7=N11=C3 (468) 5 idealD contacts. Worst 15.7 σ 1.17 Å A|864:0=0 (H0H) symm: 1555=11656

See logs/screen_initial.txt for more detail

1.1.2 At end of refinement (problem with model or restraints?)

N.B. final structure has some really bad geometry restraint violations This is serious - check the final map with visualise_geometry_coot Have $|\delta/\sigma|$ deviations > 5.0 σ . Number of outliers for each term:

11 ave $[\sigma/\sigma]$ deviations > 5.0 σ . Number of outliers for each term: 2052 bond lengths. Worst is 27.3 σ 1.61 Å A|501:C17=C16 (468) 18 bond angles. Worst is 17.3 σ 99.37° A|501:C2=C3=N11 (468) 2 planes. Worst is 13.8 σ 0.28 Å A|501:C8=C7=N11=C3 (468) 5 idealD contacts. Worst 15.7 σ 1.17 Å A|864:0=0 (H0H) symm: 1555=11656

See logs/screen_final.txt for more detail

1.2 Run conditions

refine command	/mnt/scratch_fs1/osmart/autobuster/Server/-
	autoBUSTER/bin/linux64/refine -p 2h7p_hvdro-
	genate pdb -m $2h7p/2h7p.mtz -1$ 468.grade PDB -
	ligand cif -M ManOnly -d OO ManOnly -report
BUSTER version run at by user	2 Mon Jun 16 17:40:22 BST 2014 ogmart
in directory	(have (a supert (0014/00 (assisted associated as (
in directory	/nome/osmart/2014/06/erice_workshop/-
	introtutorial/buster
nthreads, hostname, OS	6, hypatia, Ubuntu precise (12.04.4 LTS)
buster-report command	/home/osmart/autobuster/Server/scripts/-
	buster-report -d 00_MapOnly -dr 00
	MapOnly.report -f
buster-report version, run at, by user	1.1.4 <july 2015="" 25="">, Sat Jul 25 19:23:04</july>
	2015, osmart
buster-report run on refine directory	/home/osmart/2014/06/erice_workshop/-
	introtutorial/buster/00_MapOnly
buster-report output directory	/home/osmart/2014/06/erice_workshop/-
	introtutorial/buster/00_MapOnly.report
final pdb coordinates	00_MapOnly.report.pdb
final mtzfile	00_MapOnly.report.mtz

For help on "Run conditions table" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRrunConditions

1.3 Refinement vital statistics

	start	final
$\mathbf{N}_{\mathrm{cycles}}$ big	0	2
$\mathbf{N}_{\mathrm{cycles}} \mathbf{small}$	0	0
X-ray weight	n/a	n/a
$\mathbf{R}_{ ext{work}}$	0.1822	0.1822
$\mathbf{R}_{ ext{free}}$	0.1837	0.1837
$100~(R_{ ext{free}}-R_{ ext{work}})$	0.2%	0.2%
LLG_{work} (cumulative Log-Likelihood Gain, working set)	0	0.0000
$\mathbf{LLG}_{\mathrm{free}}$ (cumulative Log-Likelihood Gain, free set)	0	0.0000
High resolution limit in Å	n/a	n/a
Low resolution limit in Å	n/a	n/a
Number of waters	368	368

For help on "Refinement vital statistics" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRTblVitalStats

2 RSCC, R-factor, LLG and geometry evolution over the refine

2.1 Reciprocal space correlation coefficient plots

2.1.1 Initial RSCC plot

2.1.2 Final RSCC plot

2.2 R-factor behaviour during refinement

2.3 LLG behaviour during refinement

2.4 Geometry behaviour during optimisation

3 MolProbity analysis

3.1 Summary statistics

All–Atom	Clashscore, all atoms:	6.55		$93^{\rm rd}$ percentile [*] N=777, 1.86ű 0.25Å		
Contacts	Clashscore is the number of serious steric overlaps $(> 0.4 \text{ Å})$ per 1000 atoms.					
	Poor rotamers	5	2.45%	Goal: $<1\%$		
	Ramachandran outliers	1	0.38%	Goal: $< 0.05\%$		
Protoin	Ramachandran favored	255	95.86%	Goal: >98%		
Coometry	$C\beta$ deviations >0.25Å	0	0.00%	Goal: 0		
Geometry	MolProbity score [†]	1.94		72^{nd} percentile [*] N=11957, 1.86ű 0.25Å		
	Bad backbone bonds:	0 / 1071	0.00%	Goal: 0%		
	Bad backbone angles:	1 / 1337	0.07%	Goal: $< 0.1\%$		

In the two column results, the left column gives the raw count, right column gives the percentage.

 $* 100^{\text{th}}$ percentile is the best among structures of comparable resolution; 0^{th} is the worst "For clashscore the comparative set of structures was selected in 2004, for MolProbity score in 2006.

[†] MolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score, normalized to be on the same scale as X-ray resolution.

For more information see:

- MolProbity homepage: http://molprobity.biochem.duke.edu/
- MolProbity paper: Chen et al. (2010) "MolProbity: all-atom structure validation for macromolecular crystallography." Acta Cryst. D66: 12-21. http://dx.doi.org/10.1107/S0907444909042073
- MolProbity Ramachandran plot paper: Lovell et al. (2003) "Structure Validation by Cα Geometry: φ, ψ and Cβ Deviation." Proteins: Struc Func Genet 50: 437-450. http://dx.doi.org/10.1002/prot. 10286

3.2 Ramachandran plot

266 residues were evaluated in total for general, glycine, proline, and pre-pro. 96.99% of all residues were in favored (98%) regions. (258 residues) 99.62% of all residues were in allowed (>99.8%) regions. (265 residues) There were 1 outliers:

A 150 ASP: (phi,psi) = (-36.39, 106.99)

4 Ligand analysis

4.1 468 A 501

4.1.1 Statistics for ligand

Database ID	468 (PDB)
3-letter code	468
$\mathrm{CC}(\mathrm{2mF_o}\text{-}\mathrm{DF_c})$	0.9043
$\min(B ext{-factor})$ ‡	30.3
avg(B-factor)‡	32.4
$\max(B-factor)$;	36.2
min(occupancy)‡	1.00
max(occupancy)‡	1.00
‡hydrogen atoms e	excluded

Restraints used

restraints for 468 (.3S_-N-_3-CHLORO-2-METHYLPHENYL_-1-CYCLOHEXYL-5-OXOPYRROLIDINE-3-CARBOXAMIDE) from cif dictionary 468.grade_PDB_ligand.cif; generated by GRADE_PDB_LIGAND 1.2.9pre (June 16 2014) using MOGUL 1.6.1(DEV7), CSD as535be, with quantum mechanics RM1

For help on "Ligand Statistics Table" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#statistics

4.1.2 Picture of ligand in electron density

For help on "Ligand Electron Density Picture" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#density

4.1.3 Mogul analysis for 468 A 501

Summary

'bad' bonds	14/25		
'bad' bond angles	16/31		
'unusual' dihedrals	0/3		
'bad' rings	1/3		
bonds rms Z	9.335		
angles rms Z	5.532		
		Mogul bonds	Mogul angles
		'bad' \rightarrow purple, 'poor' \rightarrow violet	'bad' \rightarrow purple, 'poor' \rightarrow violet
		'ok' \rightarrow lime, 'good' \rightarrow green	'ok' \rightarrow lime, 'good' \rightarrow green
		'unknown' \rightarrow gray	'unknown' \rightarrow gray
		i i i	
		Mogul dihedrals 'common' \rightarrow green 'unknown' \rightarrow gray	$\begin{array}{c} \textbf{Mogul rings} \\ \text{`bad'} \rightarrow \text{purple, `poor'} \rightarrow \text{violet} \\ \text{`ok'} \rightarrow \text{lime, `good'} \rightarrow \text{green} \\ \text{`unknown'} \rightarrow \text{gray} \end{array}$

For help on "Ligand Mogul Analysis" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#Mogul

Mogul bond results for 468 A 501

$\begin{array}{c} 004 \\ 005 \\ c7 \\ c9 \\ c9 \\ c1 \\ c2 \\ c2 \\ c4 \\ c2 \\ c4 \\ c2 \\ c4 \\ c4$									
		ʻp	oor' \rightarrow violet (2.5	< Z < 4)					
		· (ok' \rightarrow lime (1.5 $<$	Z < 2.5)					
	<i>(</i>)		$good' \to green (Z)$	(<1.5)					
	'unknow	$vn' \rightarrow gray (M)$	ogul does not find	sufficient CSD e	equivalents).	1			
atoms	actual	moan	difference	Mogul σ	Mogul	Zscoro			
atoms	in Å	in Å	in Å	in Å	# samples	DSCOLE			
C17-C16	1.610	1.391	0.219	0.008	28	26.28			
C15-N13	1.098	1.415	-0.317	0.014	1552	22.23			
C10-N11	1.654	1.465	0.188	0.013	181	14.69			
C19-C20	1.524	1.384	0.139	0.010	2659	13.39			
C8-C7	1.402	1.505	-0.103	0.010	228	10.42			
C12-N13	1.492	1.350	0.142	0.014	362	9.82			
C3-N11	1.577	1.470	0.107	0.013	21	8.20			
C15-C16	1.502	1.399	0.103	0.013	49	7.79			
C19-C18	1.455	1.384	0.071	0.010	2659	6.81			
C6-C5	1.622	1.516	0.106	0.018	1743	5.99			
C5-C4	1.600	1.525	0.074	0.013	1827	5.61			
C2-C3	1.596	1.522	0.074	0.014	1191	5.24			
C8-C9	1.424	1.531	-0.107	0.021	57	5.06			
C7-N11	1.410	1.346	0.064	0.013	191	4.82			
C20-C15	1.436	1.392	0.044	0.012	3256	3.76			
C6-C1	1.582	1.516	0.066	0.018	1743	3.75			
C10-C9	1.595	1.530	0.064	0.019	36	3.40			
C18-C17	1.429	1.384	0.045	0.013	2673	3.38			
O14-C12	1.188	1.228	-0.040	0.012	3021	3.38			
C17-CL1	1.771	1.734	0.037	0.012	3693	3.12			
		(table limited to 2	0 rows)					

For help on "Ligand Mogul Analysis: Bonds" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulBonds

Mogul angle results for 468 A 501

$\begin{array}{c} \textbf{OQ4}\\ \textbf{OQ4}\\ \textbf{OQ4}\\ \textbf{OQ4}\\ \textbf{OQ4}\\ \textbf{OQ4}\\ \textbf{C}\\ \textbf{C}\\$							
		'go	ood' \rightarrow green (Z <	(1.5)			
	'unknown'	\rightarrow gray (Mog	ul does not find su	ufficient CSD equ	uvalents).		
atoms	${f actual} {f in}^\circ$	Mogul mean in °	difference in $^\circ$	$\begin{array}{c} \mathbf{Mogul} \ \sigma \\ \mathbf{in} \ ^{\circ} \end{array}$	Mogul # samples	Zscore	
C2-C3-N11	99.4	111.7	-12.3	0.9	18	14.33	
C4-C3-N11	121.0	111.7	9.3	0.9	18	10.84	
C10-N11-C7	105.2	113.8	-8.6	1.0	14	8.84	
C9-C12-N13	110.1	114.8	-4.8	0.6	11	8.23	
C18-C17-C16	119.2	123.0	-3.9	0.5	22	8.13	
O15-C7-C8	118.5	127.3	-8.8	1.1	174	7.84	
C16-C17-CL1	123.7	119.6	4.1	0.6	26	7.02	
C3-N11-C7	107.9	122.7	-14.8	2.1	16	6.92	
C16-C15-N13	110.5	119.3	-8.9	1.6	18	5.62	
C1-C2-C3	118.7	110.9	7.8	1.4	901	5.41	
C8-C7-N11	113.3	108.2	5.1	1.0	22	5.12	
C5-C6-C1	115.9	110.9	5.1	1.0	1269	4.88	
C6-C1-C2	115.9	111.3	4.6	1.0	1421	4.74	
C6-C5-C4	115.8	111.3	4.6	1.0	1421	4.71	
O14-C12-N13	129.2	124.2	5.0	1.2	305	4.30	
C20-C15-N13	130.9	121.9	9.0	2.2	1192	4.11	
C5-C4-C3	105.7	110.9	-5.1	1.4	901	3.55	
C20-C15-C16	118.7	121.3	-2.6	0.8	35	3.36	
C23-C16-C17	119.1	122.2	-3.0	0.9	26	3.17	
O15-C7-N11	128.2	124.8	3.4	1.1	162	3.04	
(table limited to 20 rows)							

For help on "Ligand Mogul Analysis: Angles" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulAngles

Mogul dihedral results for 468 A 501

Mogul dihedrals schematic							
	'unknown' \rightarrow gray (Me	ogul does not find	sufficient CSD equi	valents).			
atoms	actual torsion angle in $^\circ$	Mogul histogram	Mogul # samples	${ m classification\ or}\ \%\ { m Mogul\ population\ within\ \pm\ 10^\circ}$			
C12-N13				common			
O14-C12-N13-C15	9.6		340	100%			
C9-C12-N13-C15	-165.3		87	100%			
C15-N13				common			
C16-C15-N13-C12	140.3		354	21%			
C20-C15-N13-C12	-39.9		934	28%			
C3-N11				common			
C2-C3-N11-C10	82.3		16	38%			
C4-C3-N11-C10	-40.2		16	44%			

For help on "Ligand Mogul Analysis: Dihedrals" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulDihedrals

Mogul ring results for 468 A 501

‡'ring strangeness score' is the RMS difference in torsion angles between the instance of the ring in the ligand in the model, and the nearest instance that mogul finds in the CSD.

For help on "Ligand Mogul Analysis: Rings" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulRings

4.2 NAD A 500

4.2.1 Statistics for ligand

Database ID	NAD (PDB)
3-letter code	NAD
$\mathrm{CC}(2\mathrm{mF_o}\text{-}\mathrm{DF_c})$	0.9633
min(B-factor)‡	18.4
avg(B-factor)‡	21.9
max(B-factor)‡	25.7
min(occupancy)‡	1.00
max(occupancy)‡	1.00
thydrogen atoms	excluded

Restraints used

restraints for NAD (NICOTINAMIDE-ADENINE-DINUCLEOTIDE) from cif dictionary NAD.cif; buster commoncompounds v 3.0, Generated by GRADE_PDB_LIGAND 1.2.9pre (June 16 2014) using MOGUL 1.6.1(DEV7), CSD as535be, with quantum mechanics RM1

For help on "Ligand Statistics Table" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#statistics

4.2.2 Picture of ligand in electron density

For help on "Ligand Electron Density Picture" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#density

4.2.3 Mogul analysis for NAD A 500

Summary

For help on "Ligand Mogul Analysis" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#Mogul

Mogul bon	Mogul bond results for NAD A 500							
Mogul bond results for IVAD A 500 OBB OBB OBD OBD $CEN C5NNEA$ $CAB C2B C3B$ $OBD C2D$ $C4NCAB C4B C4B C5B C3D C4D N4NCAB C5D C4D C4NNEA$ $OBB C5D C4D C4NNEA$ $OBB C5D OFNOEA OBB C5D OFNOEA OBDOEA OBD$								
		ʻ0	$k' \rightarrow lime (1.5 < Z)$	L < 2.5)				
	<i>(</i>)	. (35	good' \rightarrow green (Z	<1.5)				
	'unknow	$n' \rightarrow \text{gray} (Mo$	ogul does not find	sufficient CSD e	quivalents).			
atoms	actual	mean	difference	Mogul σ	Mogul	Zscore		
	in A	in Å	in A	in A	# samples			
C2N-N1N	1.397	1.344	0.053	0.006	10	9.44		
C5B-C4B	1.593	1.508	0.085	0.012	1182	7.03		
C5A-N7A	1.349	1.387	-0.037	0.007	359	5.56		
C6N-N1N	1.389	1.347	0.043	0.008	44	5.54		
C2A-N1A	1.393	1.335	0.058	0.011	829	5.35		
O7N-C7N	1.362	1.239	0.123	0.025	568	4.96		
C8A-N7A	1.348	1.311	0.037	0.008	447	4.95		
C6A-N1A	1.397	1.350	0.047	0.010	239	4.86		
C2A-N3A	1.381	1.335	0.046	0.011	829	4.27		
C2N-C3N	1.407	1.381	0.026	0.007	79	3.44		
O5D-C5D	1.394	1.443	-0.048	0.015	124	3.14		
C5N-C4N	1.412	1.384	0.028	0.010	2659	2.69		
C4N-C3N	1.424	1.391	0.033	0.013	4266	2.61		
C4A-N9A	1.354	1.374	-0.020	0.008	181	2.55		
C4A-N3A	1.367	1.339	0.028	0.012	542	2.35		
O5B-C5B	1.407	1.443	-0.035	0.015	124	2.29		
C2D-C3D	1.501	1.530	-0.029	0.013	510	2.25		
C2B-C3B	1.502	1.530	-0.029	0.013	510	2.21		
C2B-C1B	1.501	1.530	-0.030	0.014	341	2.13		
PA-O3	1.616	1.594	0.022	0.011	21	2.08		
(table limited to 20 rows)								

For help on "Ligand Mogul Analysis: Bonds" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulBonds

Mogul angle results for NAD A 500							
$\begin{array}{cccccccccccc} & & & & & & & & & & & & & $							
	·····	·goo	$Da' \rightarrow \text{green} (Z < J)$		lonta)		
	unknown'	\rightarrow gray (Mogu Mogul	difference	Maguel -	valents).		
atoms	in °	mean	in °	$\frac{1}{1000}$ in °	# samples	Zscore	
		in °			# samples		
C5A-N7A-C8A	108.3	103.7	4.7	0.5	265	10.21	
N3A-C2A-N1A	120.0	128.8	-8.9	0.9	329	10.06	
N9A-C8A-N7A	109.0	114.1	-5.0	0.7	173	7.09	
C3N-C7N-N7N	124.2	117.9	6.4	1.0	373	6.70	
C4A-C5A-N7A	107.7	110.7	-3.0	0.5	241	5.82	
C5A-C4A-N3A	122.8	126.8	-4.0	0.7	212	5.63	
C4B-O4B-C1B	102.3	109.5	-7.2	1.4	434	5.02	
C4A-N9A-C8A	107.7	105.7	2.0	0.5	150	4.17	
C2A-N3A-C4A	119.1	111.5	7.6	2.0	224	3.87	
O4B-C1B-N9A	113.1	108.4	4.7	1.3	66	3.62	
C5A-C4A-N9A	107.3	105.7	1.5	0.5	148	3.31	
O7N-C7N-N7N	118.7	122.8	-4.0	1.3	516	3.16	
O7N-C7N-C3N	117.0	119.5	-2.5	0.8	373	3.11	
O4D-C1D-N1N	110.5	108.4	2.1	0.7	16	2.90	
C5A-C6A-N6A	120.9	123.7	-2.7	1.0	144	2.66	
N3A-C4A-N9A	129.9	127.1	2.9	1.2	126	2.48	
C2A-N1A-C6A	120.8	118.5	2.3	1.0	154	2.40	
C4A-N9A-C1B	122.8	127.0	-4.2	1.8	67	2.36	
C5A-C6A-N1A	119.5	117.6	1.9	0.9	133	2.16	
O2D-C2D-C1D	116.7	110.6	6.1	2.8	336	2.15	
í.	(table limited to 20 rows)						

For help on "Ligand Mogul Analysis: Angles" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulAngles

Mogul dihedral results for NAD A 500

 $\begin{array}{c} \label{eq:model} \textbf{Mogul dihedrals schematic} \\ ``rare' \rightarrow lime (all torsion angles have >0.5\% of population within <math display="inline">\pm$ 10 °) ``common' \rightarrow green (all torsion angles have >10\% of population within \pm 10 °) ``unknown' \rightarrow gray (Mogul does not find sufficient CSD equivalents). \\ \end{array}

atoms	actual torsion angle in $^{\circ}$	Mogul histogram	Mogul # samples	$classification or \ \% \ m Mogul \ population \ within \pm 10^{\circ}$
C1B-N9A				common
O4B-C1B-N9A-C8A	61.0		64	14%
O4B-C1B-N9A-C4A	-120.6		68	18%
C2B-C1B-N9A-C4A	119.7		66	18%
C2B-C1B-N9A-C8A	-58.7		63	14%
C3N-C7N				common
C4N-C3N-C7N-O7N	-1.0		707	24%
C2N-C3N-C7N-N7N	-1.0		111	23%
C2N-C3N-C7N-O7N	178.6		111	25%

atoms	actual torsion angle in $^\circ$	Mogul histogram	Mogul # samples	${ m classification\ or}\ \%\ { m Mogul\ population}\ { m within\ \pm\ 10^\circ}$
		LL 1		
C4N-C3N-C7N-N7N	179.4		707	24%
C4B-C5B				rare
C3B-C4B-C5B-O5B	-56.0		63	84%
O4B-C4B-C5B-O5B	-174.9		63	6%
C4D-C5D				rare
C3D-C4D-C5D-O5D	79.2		63	5%
O4D-C4D-C5D-O5D	-38.9		63	3%
C5B-O5B				common
C4B-C5B-O5B-PA	140.6		74	36%
C5D-O5D				common
C4D-C5D-O5D-PN	176.2		74	34%

For help on "Ligand Mogul Analysis: Dihedrals" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulDihedrals

‡'ring strangeness score' is the RMS difference in torsion angles between the instance of the ring in the ligand in the model, and the nearest instance that mogul finds in the CSD.

For help on "Ligand Mogul Analysis: Rings" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRLigandReportAfter201507#MogulRings

5 X-ray statistics

5.1 Scaling parameters in last cycle

Refined parameters		Unrefined parameters		
K_OVER B_IMPF_FRAG K_SOLV B_SOLV B_IMPF_SOLV B_11 B_22 B_33	1.11331176 0.85410099 0.74384128 30.41999119 56.01302087 -2.61272803 -2.61272803 5.22545607	K_MISS B_MISS K_IMPF_MISS B_IMPF_MISS K_IMPF_SOLV B_OVER B_12 B_13 B_22	1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000	
		D_20	0.0000000	

For help on "X-ray scaling parameters" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRScalingInfo

5.2 Wilson plots

5.2.1 Wilson plot at start of refinement

5.2.2 Wilson plot at end of refinement

6 Real-space correlations

6.1 Side chains of chain A

