BUSTER-REPORT LATEX/PDF OUTPUT

Report on BUSTER refinement run in directory 1pmq_01_MapOnly

Contents

1	Run overview	2
	1.1 Geometry WARNING messages	$\overline{2}$
	1.1.1 At start of refinement	$\overline{2}$
	1.1.2 At end of refinement (problem with model or restraints?)	2
	1.2 Bun conditions	2
	1.3 Refinement vital statistics	3
2	BSCC B-factor LLC and geometry evolution over the refine	1
4	2.1 Reciprocal space correlation coefficient plots	- - /
	2.1 Initial PSCC plot	4
	2.1.1 Initial RSCC plot	4
	2.1.2 Final 16000 plot	45
	2.2 R-factor behaviour during refinement	0 E
	2.5 LLG benaviour during remember	0 F
	2.4 Geometry behaviour during optimisation	Э
3	MolProbity analysis	6
	3.1 Summary statistics	6
	3.2 Ramachandran plot	7
4	Ligand analysis	8
	4.1 Individual outliers	8
_		
5	X-ray statistics	10
	5.1 Scaling parameters in last cycle	10
	5.2 Wilson plots	10
	5.2.1 Wilson plot at start of refinement	10
	5.2.2 Wilson plot at end of refinement \ldots 1	10
6	Real-space correlations 1	1
	6.1 Side chains of chain A	11
	6.2 Mainchain of chain A	11

1 Run overview

1.1 Geometry WARNING messages

1.1.1 At start of refinement

N.B. initial structure has some really bad geometry restraint violations Have $|\delta/\sigma|$ deviations > 5.0 σ . Number of outliers for each term: 47 bond lengths. Worst is 15.5 σ 0.86 Å A|501:N19=H19 (880) 12 bond angles. Worst is 12.1 σ 108.55° A|502:C8=N7=C5 (ANP) 1 planes. Worst is 11.9 σ 0.24 Å A|501:N49=C50=N54=C55 (880) 1 idealD contacts. Worst 5.1 σ 2.67 Å A|283:SG(CYS)=A|346:NZ(LYS)

See logs/screen_initial.txt for more detail

1.1.2 At end of refinement (problem with model or restraints?)

N.B. final structure has some really bad geometry restraint violations This is serious - check the final map with visualise_geometry_coot

Have $|\delta/\sigma|$ deviations > 5.0 σ . Number of outliers for each term: 47 bond lengths. Worst is 15.5 σ 0.86 Å A|501:N19=H19 (880) 12 bond angles. Worst is 12.1 σ 108.55° A|502:C8=N7=C5 (ANP) 1 planes. Worst is 11.9 σ 0.24 Å A|501:N49=C50=N54=C55 (880) 1 idealD contacts. Worst 5.1 σ 2.67 Å A|283:SG(CYS)=A|346:NZ(LYS)

See logs/screen_final.txt for more detail

1.2 Run conditions

refine command	/software/GPhL/BUSTER_stable_production_20140512/
	autoBUSTER/bin/linux64/refine -p
	1pmq_hydrogenate_880.pdb -m 1pmq/1pmq.mtz -
	d 1pmq_01_MapOnly -1 880.grade_PDB_ligand.cif
	-M MapOnly -report
BUSTER version, run at, by user	?, Thu May 29 07:24:21 BST 2014, osmart
in directory	/home/osmart/erice_workshop/1pmq_tutorial
nthreads, hostname, OS	2, fuji01vm, Ubuntu precise (12.04.4 LTS)
buster-report command	/home/software/GPhL/-
	BUSTER_stable_production_20140512/scripts/-
	buster-report -d 1pmq_01_MapOnly -dreport
	1pmq_01_MapOnly.report
buster-report version, run at, by user	1.1.2 <may 05="" 2014="">, Thu May 29 07:25:16</may>
	2014, osmart
buster-report run on refine directory	/home/osmart/erice_workshop/1pmq_tutorial/-
	1pmq_01_MapOnly
buster-report output directory	/home/osmart/erice_workshop/1pmq_tutorial/-
	1pmq_01_MapOnly.report
final pdb coordinates	1pmq_01_MapOnly.report.pdb
final mtzfile	1pmq_01_MapOnly.report.mtz

1.3 Refinement vital statistics

	start	final
$\mathbf{N}_{\mathrm{cycles}}$ big	0	2
$\mathbf{N}_{\mathrm{cycles}} \mathbf{small}$	0	0
X-ray weight	n/a	n/a
$\mathbf{R}_{ ext{work}}$	0.2253	0.2231
$\mathbf{R}_{ ext{free}}$	0.2636	0.2619
$100~(R_{ ext{free}}-R_{ ext{work}})$	3.8%	3.9%
LLG_{work} (cumulative Log-Likelihood Gain, working set)	0	0.0000
$\mathbf{LLG}_{\mathrm{free}}$ (cumulative Log-Likelihood Gain, free set)	0	0.0000
High resolution limit in Å	n/a	n/a
Low resolution limit in Å	n/a	n/a
Number of waters	54	54

For help on "Refinement vital statistics" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRTblVitalStats

2 RSCC, R-factor, LLG and geometry evolution over the refine

- 2.1 Reciprocal space correlation coefficient plots
- 2.1.1 Initial RSCC plot

2.1.2 Final RSCC plot

2.2 R-factor behaviour during refinement

2.3 LLG behaviour during refinement

2.4 Geometry behaviour during optimisation

3 MolProbity analysis

3.1 Summary statistics

All–Atom	Clashscore, all atoms:	7.39		97 th percentile [*] N=456, 2.20Å \pm 0.25Å
Contacts	Clashscore is the r	number of se	overlaps (> 0.4 Å) per 1000 atoms.	
	Poor rotamers	11	3.56%	Goal: $<1\%$
	Ramachandran outliers	3	0.88%	Goal: $< 0.05\%$
Protoin	Ramachandran favored	321	93.86%	Goal: >98%
Coometry	$C\beta$ deviations >0.25Å	0	0.00%	Goal: 0
Geometry	MolProbity score [†]	2.23		71^{st} percentile [*] N=10167, 2.20ű 0.25Å
	Bad backbone bonds:	0 / 1389	0.00%	Goal: 0%
	Bad backbone angles:	0 / 1731	0.00%	Goal: $<0.1\%$

In the two column results, the left column gives the raw count, right column gives the percentage.

 $* 100^{\text{th}}$ percentile is the best among structures of comparable resolution; 0^{th} is the worst "For clashscore the comparative set of structures was selected in 2004, for MolProbity score in 2006.

[†] MolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score, normalized to be on the same scale as X-ray resolution.

For more information see:

- MolProbity homepage: http://molprobity.biochem.duke.edu/
- MolProbity paper: Chen et al. (2010) "MolProbity: all-atom structure validation for macromolecular crystallography." Acta Cryst. D66: 12-21. http://dx.doi.org/10.1107/S0907444909042073
- MolProbity Ramachandran plot paper: Lovell et al. (2003) "Structure Validation by Cα Geometry: φ, ψ and Cβ Deviation." Proteins: Struc Func Genet 50: 437-450. http://dx.doi.org/10.1002/prot. 10286

3.2 Ramachandran plot

342 residues were evaluated in total for general, glycine, proline, and pre-pro. 95.61% of all residues were in favored (98%) regions. (327 residues) 99.71% of all residues were in allowed (>99.8%) regions. (341 residues) There were 1 outliers:

A 382 GLU: (phi,psi) = (52.05, 100.76)

4 Ligand analysis

Ligand	Picture	Residu	ie in mo	del	Fo	$-F_{c}$ co	orrelation	RMS z_{bond}	RMS z_{angle}
880		A 501			0.9	950		4.207	3.063
ANP		A 502	0.769	4.74	17	4.412			

4.1 Individual outliers

Ligand	Residue	Term type	Atoms	Observed value	Ideal value	Ζ
880	A 501	BOND	C17-C18	1.585	1.512	5.2
880	A 501	BOND	C5-C4	1.493	1.377	8.4
880	A 501	BOND	C57-C56	1.559	1.524	3.0
880	A 501	BOND	C17-C16	1.575	1.531	2.9
880	A 501	BOND	C37-C35	1.420	1.391	3.2
880	A 501	BOND	C59-C60	1.571	1.524	4.0
880	A 501	BOND	C5-N1	1.520	1.389	8.8
880	A 501	BOND	C36-N51	1.367	1.341	3.8
880	A 501	BOND	C41-C40	1.466	1.383	9.1
880	A 501	BOND	C47-C36	1.428	1.388	4.0
880	A 501	BOND	C41-C35	1.441	1.391	4.0
880	A 501	BOND	C38-CL45	1.672	1.734	5.1
880	A 501	BOND	C36-C5	1.555	1.478	10.5
880	A 501	BOND	C47-C48	1.418	1.381	3.0
880	A 501	BOND	C2-N3	1.366	1.316	3.4
880	A 501	BOND	C40-C39	1.459	1.384	5.7
880	A 501	BOND	C4-N3	1.443	1.384	4.6
880	A 501	BOND	C21-C16	1.590	1.531	3.9
880	A 501	BOND	C60-C55	1.587	1.518	4.6
880	A 501	BOND	C21-C20	1.595	1.512	6.0
880	A 501	ANGLE	C41-C40-C39	118.1	120.2	2.8
880	A 501	ANGLE	C56-C55-N54	122.7	110.4	7.8
880	A 501	ANGLE	C4-N3-C2	110.4	105.2	3.3
880	A 501	ANGLE	C60-C55-C56	114.9	110.7	5.2
880	A 501	ANGLE	C47-C36-N51	119.7	123.0	3.9

880	A 501	ANGLE	C20-N19-C18	114.6	110.5	3.0
880	A 501	ANGLE	C59-C58-C57	114.7	110.9	3.4
880	A 501	ANGLE	C5-C36-N51	123.6	115.8	7.6
880	A 501	ANGLE	C58-C57-C56	116.0	111.3	4.5
880	A 501	ANGLE	C47-C36-C5	116.2	121.1	4.4
880	A 501	ANGLE	C57-C56-C55	114.0	111.2	3.4
880	A 501	ANGLE	C6-N1-C5	130.4	126.8	2.7
880	A 501	ANGLE	C5-C4-N3	105.2	110.3	4.1
880	A 501	ANGLE	C7-C6-N1	117.5	112.3	2.5
880	A 501	ANGLE	C60-C55-N54	97.7	110.4	8.0
880	A 501	ANGLE	C36-N51-C50	119.0	116.6	2.7
ANP	A 502	BOND	O2'-C2'	1.458	1.423	2.6
ANP	A 502	BOND	PG-N3B	1.572	1.637	8.0
ANP	A 502	BOND	C5-C4	1.476	1.387	7.8
ANP	A 502	BOND	C6-N6	1.384	1.336	3.5
ANP	A 502	BOND	O5'-C5'	1.626	1.443	11.8
ANP	A 502	BOND	C4-N9	1.395	1.374	2.6
ANP	A 502	BOND	PG-O2G	1.546	1.454	9.7
ANP	A 502	BOND	PB-N3B	1.562	1.637	9.1
ANP	A 502	BOND	C5'-C4'	1.539	1.508	2.5
ANP	A 502	BOND	PB-O1B	1.532	1.454	8.2
ANP	A 502	BOND	C8-N7	1.350	1.311	5.1
ANP	A 502	BOND	C4-N3	1.424	1.339	6.8
ANP	A 502	ANGLE	N3-C2-N1	123.3	128.8	6.4
ANP	A 502	ANGLE	C5-N7-C8	108.5	103.7	10.9
ANP	A 502	ANGLE	C5-C4-N9	102.5	105.8	7.3
ANP	A 502	ANGLE	N9-C8-N7	109.0	114.1	7.4
ANP	A 502	ANGLE	O4'-C1'-N9	111.8	108.4	2.6
ANP	A 502	ANGLE	N3-C4-N9	133.5	127.1	5.5
ANP	A 502	ANGLE	O5'-C5'-C4'	102.3	108.7	2.7
ANP	A 502	ANGLE	C6-C5-C4	113.3	117.0	5.6
ANP	A 502	ANGLE	C4-C5-N7	108.7	110.7	3.8
ANP	A 502	ANGLE	C2-N1-C6	123.4	118.6	5.2
ANP	A 502	ANGLE	C5-C4-N3	124.1	126.8	3.8
ANP	A 502	ANGLE	C4-N9-C8	111.3	105.7	12.1
ANP	A 502	ANGLE	O4'-C1'-C2'	110.4	106.5	3.4
ANP	A 502	ANGLE	C6-C5-N7	138.0	132.1	5.5
ANP	A 502	ANGLE	C5-C6-N6	120.6	123.6	2.9
ANP	A 502	ANGLE	C5-C6-N1	120.6	117.6	4.1
ANP	A 502	ANGLE	C5'-C4'-C3'	110.3	115.3	2.8

5 X-ray statistics

5.1 Scaling parameters in last cycle

Refined parameters			Unrefined parameters			
K_OVER B_IMPF_FRAG K_SOLV B_SOLV B_IMPF_SOLV B_11 B_22 B_33	0.78579614 2.30750020 0.66124584 70.43197712 19.60604606 -34.04047314 13.97100678 20.06946636		K_MISS B_MISS K_IMPF_MISS B_IMPF_MISS K_IMPF_SOLV B_OVER B_12 B_13	$\begin{array}{c} 1.0000000\\ 0.0000000\\ 1.0000000\\ 0.0000000\\ 1.0000000\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ \end{array}$		
			B_23	0.00000000		

For help on "X-ray scaling parameters" see BUSTER wiki page http://www.globalphasing.com/buster/wiki/index.cgi?BRScalingInfo

5.2 Wilson plots

5.2.1 Wilson plot at start of refinement

5.2.2 Wilson plot at end of refinement

Wilson plot at end of refinement

6 Real-space correlations

6.1 Side chains of chain A

